Mullaca Physalis angulata

Family: Solanaceae

Synonyms: *Physalis capsicifolia, P. lanceifolia, P. ramosissima, P. esquirolii, P. linkiana, P. pendula* **Standard Common Name:** Not listed in the Herbs of Commerce, 2nd edition.

Other Common Names: Battre-autour, bolsa mullaca, camapu, cape gooseberry, capulí cimarrón, cecendet, cutleaf ground cherry, dumadu harachan, hog weed, juá-de-capote, k'u chih, nvovo, polopa, saca-buche, thongtheng, tino-tino, topatop, 'urmoa batoto bita, wapotok, wild tomato, winter cherry.

Overview

Botanical Description

Mullaca is an annual herb indigenous to many parts of the tropics, including the Amazon. It grows up to 1 m high, bears small, cream-colored flowers, and produces small, light yellowish-orange edible fruit, sometimes referred to as cape gooseberry.

Ethnobotanical Uses

All parts of the mullaca plant have been used medicinally in traditional herbal medicine systems. The following properties have been attributed to mullaca by traditional herbal medicine practitioners: antiasthmatic, antibacterial, antigonorrhoeal, antihyperglycemic, anti-inflammatory, antimicrobial, antiseptic, antiviral, diuretic, expectorant and febrifuge.

The traditional use of mullaca has been recorded in herbal medicine systems in the following countries: Bougainville,¹ Brazil,²⁻⁵ Colombia,⁶ Guatemala,⁷ Guinea,⁸ Ivory Coast,^{9,10} Jamaica,¹¹ Mozambique,¹² Nicaragua,^{13,14} Nigeria,¹⁵ Peru,¹⁶⁻²² Philippines,²³ Rotuma, ²⁴ Solomon Islands,²⁵ Surinam,²⁶ Taiwan,²⁷⁻²⁹ Tonga,³⁰ West Indies.³¹

Summary of Traditional Uses of Mullaca:³²

Entire Plant:	Childbirth, diuretic, fever, gonorrhea, jaundice, liver diseases, malaria, nephritis, postpartum hemorrhage, rashes, skin sores, sleeping sickness, to prevent abortion, tumors.
Fruit:	Infection, infertility, inflammation, postpartum infection, pruritis, skin diseases.
Leaf:	Asthma, dermatosis, diarrhea, diuretic, earache, fever, gonorrhea, hemorrhage, hepatitis, infections, inflammation, liver disorders, malaria, postpartum infection, pruritis, rheumatism, skin diseases, to prevent abortion, worms.
Root:	Diabetes, earache, fever, hepatitis, jaundice, liver disorders, malaria, rheumatism.
Sap:	Earache, postpartum infection, pruritis.
Seed:	Infertility.
Stem:	Hepatitis.

Primary Uses in Traditional Herbal Medicine Systems

<u>Internal</u>

Herbal practitioners in both South and North America today rely on mullaca for various bacterial and viral infections as well as a complementary therapy for cancer and leukemia.³³

<u>External</u>

Externally the entire plant has primarily been used in traditional herbal medicine systems for skin sores, rashes, pruritis and earaches.^{3,13,34}

Chemistry

Mullaca contains flavonoids, alkaloids and plant steroids known as *physalins*, many of which have never been seen in science before.^{27,35-39} Chemicals include: Ayanin, chlorogenic acid, choline, ixocarpanolide, myricetin, phygrine, physagulin A thru G, physalin A thru K, physangulide, sitosterol, vamonolide, withaminimin, withangulatin A, withanolide D, withanolide T, withaphysanolide.³²

Various chemicals in mullaca have been documented with the following biological activities:

In vivo and In vitro

Cytotoxic and Antitumor Activity

The steroid withangulatin A given intraperitoneally to rats was active against 9L rat brain tumor cells.⁴⁰ Physalin B and withangulatin A demonstrated cytotoxic and antitumor activity *in vitro*.^{41,42} The steroid, physalin B, isolated from the root, demonstrated activity against 3PS murine leukemia in mice.⁴¹ Physalin F given intraperitoneally to mice was active against P388 lymphocytic leukemia.⁴³ The P388 cell line is a general predictor of antitumor activity.

Immunomodulatory Activity

Physalins B, F and G caused a reduction in nitric oxide production by macrophages stimulated with lipopolysaccaride and interferon-gamma. Physalin-B lowered serum TNF-alpha significantly after lipopolysaccaride challenge. Mice injected with physalins survived after a lethal lipopolysaccaride challenge.⁴⁴

<u>Molluscicidal</u>

Physalins extracted from the leaf and stem had molluscicide activity against Biomphalaria tenagophila.45

In vivo and In vitro Research and Pharmacological Actions

Anticancerous Activity

Cytotoxic Activity and Antitumor Activity

A methanol leaf extract in cats was active against human lung carcinoma (CA-A549), with an IC50=3.93 mcg/ml.¹⁷ In *in vitro* studies, ethanol extracts of the entire plant at 10 mcg/ml were active against the following cell lines: human oral epidermoid carcinoma (Ca-9KB); human colon cancer; human lung cancer (lu-1); human cervical adenocarcinoma (HeLa), hepatoma-2 and hepatoma-HA22T.⁴³

In an *in vitro* study a methanol extract of the leaf was active against the human cell line KB-16, with an IC50=3.15 mcg/ml.¹⁷ A water and methanol extract of aerial parts at 4 mcg/ml demonstrated *in vitro* activity towards MT-4 (metallothionein-4) cells.⁴⁶

An ethanol extract of the entire plant given intraperitoneally to mice at 75 mg/kg was active against leuk-P388.⁴³ In an *in vitro* study a methanol extract from the leaf showed activity towards leuk-P388 cells at IC50=2.5 mcg/ml.¹⁷ The P388 cell line is a general predictor of antitumor activity.

Immunomodulatory Activity

In vitro ethanol extracts of the entire plant at 0.39-20 mcg stimulated T-lymphocyte blastogenesis.⁴⁷ At 10 mcg antibody formation was enhanced in mice.⁴⁷

Anti-inflammatory Activity

Flower extracts at 200 mg/kg orally in mice inhibited acute and subacute carrageenan-induced paw edema, arachidonic acid-induced ear edema and formaldehyde-induced arthritis.⁴⁸

Anti-allergic Activity

Flower extracts at 200 mg/kg orally, administered for 1 week, inhibited 2,4-dinitrofluorobenzene-induced contact hypersensitivity type IV allergic reaction in mice.⁴⁸

Antimicrobial and Antiprotozoal Activity

<u>Antibacterial</u>

Methanol extracts of the entire plant at 2 mg/ml showed *in vitro* activity against *Corynebacterium diphtheriae, Klebsiella sp., Neisseria sp., Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus sp.*^{49,50} No activity was seen against *Salmonella sp.* and *Streptobacillus sp.*⁴⁹ A leaf methanol extract in a broth culture inhibited *Bacillus subtilis.*⁵⁰ No activity was seen against *Escherichia coli, Proteus sp., Pseudomonas aeruginosa, Staphylococcus albus* and *Staphylococcus aureus.*⁵⁰ An ethanol-water leaf extract at 50 ul/agar plate was inactive against *Neisseria gonorrhea.*⁷

Antimycobacterial

Ethanol, chloroform, hydroalcoholic and chemical fractions of the leaf and aerial parts of mullaca demonstrated antimycobacterial activity *in vitro* at 32-625 mcg/ml. Activity was against the following mycobacterium: *M. tuberculosis, M. intracellulare, M. malmoense, M. avium* and *M. kansasi.* ⁵¹ A leaf ethanol extract showed the greatest activity at 32 mcg/ml towards *M. tuberculosis.* ⁵² Chloroform extracts were active towards a greater number of organisms at a lower dose than the hydroalcoholic extracts. ⁵¹

<u>Antiviral</u>

A hot water extract of the aerial parts of the plant at 0.1 mg/ml showed *in vitro* activity against poliovirus I.⁵³ At 340 mcg/ml a methanol extract showed protease inhibition *in vitro*; a water extract was inactive.⁵⁴

<u>Antimalarial</u>

A plant decoction using mullaca (*Physalis angulata*) along with *Jatropha curcas*, *Gossypium hirsutum* and *Delonix regia*, was administered to human patients with malaria. The complex eliminated malaria parasites (*Plasmodium falciparum* and *Plasmodium malarie*) from the peripheral blood of patients with malaria. No undesired effects were seen.⁵⁵ In rats the herbal complex affected select cytochrome p450 isozymes in relation to the sex of the rat, indicating it may precipitate interactions with other drugs via liver transformation and elimination.⁵⁵

<u>Antitrypanosomal</u>

Various extracts of the aerial parts, leaf, root and fruit showed *in vitro* antitrypanosomal activity against *Trypanosoma brucei rhodesiense* between the concentrations of 19-56 mcg/ml.⁵⁶

Molluscicidal

Ethyl acetate and acetone extracts from the whole plant and ethanol extracts of the roots between 0.1-500 mg/l had *in vitro* molluscicide activity against *Biomphalaria tenagophila.*⁴⁵ An aqueous slurry of the fruit, roots and leaves was inactive against *Lymnaea columella* and *Lymnaea cubensis in vitro.*⁵⁷

Cardiovascular Activity

Hypotensive Activity

A water extract of the fruit had a hypotensive effect in cats.⁵⁸ Activity was blocked by gallamine or atropine.

Anticoagulant Activity

In an *in vitro* study a leaf extract at 50% concentration had an anticoagulant effect on whole human blood.⁵⁹

Central Nervous System Effect

A chloroform extract of the entire plant at 100 mcg/ml had weak serotonin receptor binding activity in calves.⁶⁰

Antihyperglycemic Activity

A water extract of the root given intragastrically to mice had weak hypoglycemic activity.⁶¹

Antispasmodic Activity

In the guinea pig ileum 2 mg/ml of an entire plant extract inhibited muscle spasms induced with electrical stimulation.⁶²

Patents Filed / Pending

A US Patent is filed on a method for treating polio virus infection comprising an oral administration of at least one crude drug selected from a group of plants including the aerial parts of *Physalis angulata*. Aqueous and methanol plant extracts were used and tested against the poliovirus (vaccine strain and Sabin strain) using the plaque formation *in vitro* test method. At 100 mu.m/ml mullaca showed plaque formation efficiency at 17.6%.⁶³

Mechanism of Action

Anticancerous Activity

- The steroid withangulatin A inhibited topoisomerase II.⁴⁰
- Withangulatin A enhanced phosphorylation.^{64,65}
- Extracts of mullaca inhibited protein synthesis in leukemia cells.⁴³

Immunomodulatory Activity

- *In vivo*, extracts enhanced antibody response.⁴⁷
- In vitro, extracts stimulated T-lymphocyte blastogenesis.⁴⁷
- Immunomodulatory activity is considered to be due to the physalin chemicals.⁴⁴

Antimicrobial Activity

• Mullaca extracts are able to inhibit protease.⁵⁴

Central Nervous System Effect

Plant extracts have serotonin receptor binding activity.⁶⁰

Dosage

Internal Crude Preparations, Entire Plant. 2-4 grams daily. Infusion: 1 cup (150 ml) boiling water poured over approximately 2 grams of dried whole herb. Steep, covered, for 5-10 minutes. Drink 1-3 times daily. Tincture: 1-3 ml twice daily of a 4:1 tincture.

External

Infusion applied topically.

Duration of Administration

<u>Internal</u>

Duration of administration varies per complaint and individual. No adverse effects have been reported with long-term ingestion.

Contraindications

None reported.

Drug Interactions

May potentiate hypotensive medications.⁵⁸ May potentiate anticoagulant medications.⁵⁹

Side Effects

None reported.

Safety Rating

Not rated.

References

- Holdsworth, D. K. "Traditional medicinal plants of the North Solomons Province Papua New Guinea." Q. J. Crude Drug Res. 1980; 18: 33-44.
- 2. Milliken, W. "Malaria and antimalarial plants in Roraima, Brazil." *Trop. Doctor Suppl.* 1997: 20-25.
- 3. Branch, L., et al. "Folk medicine of Alter Do Chao, Para, Brazil." *Acta Amazonica* 1983; 13(5/6): 737-797.
- 4. Milliken, W. "Traditional anti-malarial medicine in Roraima, Brazil." *Econ. Bot.* 1997; 51(3): 212-237.

- 5. de Almeida, E. R. *Plantas medicinais Brasileiras, Conhecimentos populares E Científicos*. Hemus Editora Ltda, Sau Paulo, Brazil. 1993.
- 6. Garcia-Barriga, H. "Flora medicinal de Columbia, Botanica-Medica." *Cein. Nat.* 3 VOLS. 1974-5.
- 7. Caceres, A. et al. "Antiogonorrhoeal activity of plants used in Guatemala for the treatment of Sexually Transmitted Diseases." *J. Ethnopharmacol.* 1995; 48(2): 85-88.
- 8. Akendengue, B. "Medicinal plants used by the Fang traditional healers in equatorial Guinea." *J. Ethnopharmacol.* 1992; 37(2): 165-173.
- 9. Kerharo, J. "Historic and ethnopharmacognosic review on the belief and traditional practices in the treatment of sleeping sickness in West Africa." *Bull. Soc. Med. Afr. Noire Lang Fr.* 1974. 19: 400-.
- 10. Kone-Bamba, D. et al. "Hemostatic activity of 216 plants used in traditional medicine in the lvory Coast." *Plant Med. Phytother.* 1987; 21(2): 122-130.
- 11. Asprey, G. F., et al. "Medicinal plants of Jamaica. IV." West Indian Med. J. 1955; 4: 145-165.
- 12. Amico, A. "Medicinal plants of Southern Zambesia." *Fitoterapia* 1977; 48: 101-139.
- 13. Coe, F. G., et al. "Screening of medicinal plants used by the Garifuna of Eastern Nicaragua for bioactive compounds." *J. Ethnopharmacol.* 1996; 53: 29-50.
- 14. Coee, F. G., et al. "Ethnobotany of the Garifuna of Eastern Nicaragua." *Econ. Bot.* 1996; 50(1): 71-107.
- 15. Watt, J. M. "African plants potentially useful in mental health." *lloydia* 1967; 30(1): 1-.
- 16. Jovel, E. M., et al. "An ethnobotanical study of the traditonal medicine of the Mestizo people of Suni Mirano, Loreto, Peru." *J. Ethnopharmacol.* 1996; 53: 149-156.
- 17. Ismail, N., et al. "A novel cytotoxic flavonoid glycoside from *Physalis angulata*." *Fitoterapia* 2001; 72(6): 676-679.
- 18. Duke, J. A. Amazonian Ethnobotanical Dictionary: 1994: 181-.
- 19. Ferreyra, R. Flora invasora de los cultivos de pacallpi y tingo maria. 1970.
- 20. Rutter, R, A. *Catalogo de Plantas utiles de la Amazonia Peruana*. Instituto Linguistico De Verano. Yarinacocha, Peru. 1990.
- 21. Ayala Flore, F. "Notes on some medicinal and posionous plants of Amazonian Peru." *Advances in Economic Botany 1.* 1984: 1-8.
- 22. Kember Mejia, et al. "Plantas medicinales de uso popular en la Amazonia Peruana." AECI and IIAP. Lima, Peru. 1995.
- 23. Madulid, D. A., et al. "Ethnopharmacological study of the Ati Tribe in Nagpana, Barotac Viejo, Iloilo." *Acta Manilana 1989;* 38(1): 25-40.
- 24. MC Clatchey, W. "The ethnopharmacopoeia of Rotuma." *J. Ethnopharmacol.* 1996; 50(3): 147-156.
- 25. Blackwood, B. Both Sides of Buka Passage. Oxford at the Clarendon Press. 1935.
- 26. Hasrat, J. A. et al. "Medicinal plants in Suriname: screening of plant extracts for receptor binding activity." *Phytomedicine* 1997; 4(1): 59-65.
- 27. Chen, C. M., et al. "Withangulatin A, a new withanolide from *Physalis angulata*." *Heterocycles* 1990; 31(7): 1371-1375.
- 28. Yanfg, L. L., et al. "Antihepatotoxic actions of formosan plant drugs." *J. Ethnopharmacol.* 1987; 19(1): 103-110.
- 29. Lin, C. C., et al. "Medicinal Plants Used for the treatment of Hepatitis in Taiwan." *Amer. J. Chinese Med.* 1990; 18(1/2): 35-43.
- 30. Singh, Y. N., et al. "Folk medicine in Tonga. A study on the use of herbal medicines for obstetric and gynaecological conditions and disorders." *J. Ethnopharmacol.* 1984; 12(3): 305-329.
- 31. Ayensu, E. S. Medicinal plants of the West Indies. Unpublished Manuscript. 1978; 110.
- 32. Technical Data Report for Mullaca (*Physalis angulata*). Sage Press. 2002.
- 33. Taylor, Leslie. *The Healing Power of Rainforest Herbs. A Guide to Understanding and Using Herbal Medicinals.* Square One Press. 2003.
- 34. Jovel, E. M., et al. "An ethnobotanical study of the traditional medicine of the Mestizo people of Suni Mirano, Loreto, Peru." *J. Ethnopharmacol.* 1996; 53: 149-156.
- 35. Vasina, O. E., et al. "Withasteroids of physalis. VII. 14-alpha-hydroxyixocarpanolide and 24,25-epoxywithanolide D." *Chem. Nat. Comp.* 1987; 22(5): 560-565.

- 36. Shingu, K., et al. "Physagulin C, a new withanolide from *Physalis angulata* L." *Chem. Pharm. Bull.* 1991; 39(6): 1591-1593.
- 37. Shingu, K., et al. "Three new withanolides, physagulins A, B and D from *Physalis angulata* L." *Chem. Pharm. Bull.* 1992; 40(8): 2088-2091.
- 38. Shingu, K., et al. "Three new withanolides, physagulins E, F and G from *Physalis angulata* L." *Chem. Pharm. Bull.* 1992; 40(9): 2448-2451.
- 39. Basey, K., et al. "Phygrine, an alkaloid from physalis species." *Phytochemistry* 1992; 31(12): 4173-4176.
- 40. Lee, W. C., et al. "Induction of heat-shock response and alterations of protein phosphorylation by a novel topoisomerase II inhibitor, withangulatin A, in 9L rat brain tumor cells." *Cell Physiol.* 1991; 149(1): 66-7.
- 41. Antoun, M. D., et al. "Potential antitumor agents. XVII. Physalin B and 25, 26-epidihydrophysalin C from *Witheringia coccoloboides*." *J. Nat. Prod.* 1981; 44(5): 579-85.
- 42. Juang J. K., et al. "A new compound, withangulatin A, promotes type II DNA topoisomerase-mediated DNA Damage." *Biochem Biophys. Res. Commun.* 1898; 159(3): 1128-34.
- 43. Chiang, H. C., et al. "Antitumor agent, physalin F from *Physalis angulata* L." *Anticancer Res.* 1992; 12(3): 837-843.
- 44. Soares, M. B., et al. "Inhibition of macrophage activation and lipopolysaccaride-induced death by seco-steroids purified from *Physalis angulata* L." *Eur. J. Pharmacol.* 2003; 459(1): 107-12.
- 45. dos Santos, J. A., et al. "Molluscicidal activity of *Physalis angulata* L. extracts and fractions on *Biomphalaria tenagophilia* (d'Orbigny, 1835) under laboratory conditions." *Mem. Inst. Oswaldo Cruz.* 2003; 98(3): 425-8.
- 46. Otake, T., et al. "Screening of Indonesian plant extracts for anti-human immunodeficiency virus- type 1 (HIV-1) activity." *Phytother. Res.* 1995; 9(1): 6-10.
- 47. Lin, Y. S., et al. "Immunomodulatory activity of various fractions derived from *Physalis angulata* I extract." *Amer. J. Chinese Med.* 1992; 20(3/4): 233-243.
- 48. Choi, E. M., et al. "Investigations of anti-inflammatory and antinociceptive activities of *Piper cubeba*, *Physalis angulata* and *Rosa hybrida*." *J. Ethnopharmacol.* 2003; 89(1): 171-5.
- 49. Hussain, H. S. N., et al. "Plants in Kano ethomedicine; screening for antimicrobial activity and alkaloids." *Int. J. Pharmacog.* 1991; 29(1): 51-56.
- 50. Ogunlana, E. O., et al. "Investigations into the antibacterial activities of local plants." *Planta Med.* 1975; 27: 354-.
- 51. Januario, A. H., et al. "Antimycobacterial physalins from *Physalis angulata* L. (Solanaceae)" *Phytother. Res.* 2002; 16(5): 445-448.
- 52. Pietro, R. C. L. R., et al. "In vitro antimycobacterial activities of *Physalis angulata* L." *Phytomedicine* 2000; 7(4): 335-338.
- 53. Kurokawa, M., et al. "Antiviral traditional medicines against herpes simplex virus (HSV-1), poliovirus, and measles virus in vitro and their therapeutic efficacies for HSV-1 infection in mice." *Antiviral Res.* 1993; 22(2/3): 175-188.
- 54. Kusumoto, I. T., et al. "Screening of some Indonesian medicinal plants for inhibitory effects on HIV-1 protease." *Shoyakugaku Zasshi* 1992; 46(2): 190-193.
- 55. Ankrah, N. A., et al. "Evaluation of efficacy and safety of a herbal medicine used for the treatment of malaria." *Phytother. Res.* 2003; 17(6): 697-701.
- 56. Freiburghaus, F., et al. "Evaluation of African medicinal plants for their in vitro trypanocidal activity." *J. Ethnopharmacol.* 1996; 55(1): 1-11.
- 57. Medina, F. R. et al. "Terrestrial plants molluscicidal to lymnaeid hosts of *Fasciliasis hepatica* in Puerto Rico." *J. Agr. Univ. Puerto Rico* 1979; 63: 366-376.
- 58. Cesario De Mello, A., et al., "Presence of acetylcholine in the fruit of *Physalis angulata* (Solanaceae)." *Cienc. Cult.* (Sao Paulo) 1985; 37(5): 799-805.
- 59. Kone-bamba, D. et al. "Hemostatic activity of 216 plants used in traditional medicine in the Ivory Coast." *Plant Med. Phytother.* 1987; 21(2): 122-130.
- 60. Hasrat, J. A., et al. "Screening of medicinal plants from Suriname for 5-HT 1a ligands: Bioactive

isoquinoline alkaloids from the fruit of Annona muricata." Phytomedicine 1997; 4(2): 133-140.

- 61. Richter, R. K., et al. "Reporting biological assay results on tropical medicinal plants to host country collaborators." *J. Ethnopharmacol.* 1998; 62(1): 85-88.
- 62. Cox, P. A., et al. "Pharmacological activity of the Samoan ethnopharmacopoeia." *Econ. Bot.* 1989; 43(4): 487-497.
- 63. Hozumi, et al. Antiviral agent containing crude drug. US Patent #5,411,733. May 2, 1995.
- 64. Lee, Y. C., et al. "Integrity of intermediate filaments is associated with the development of acquired thermotolerance in 9I rat brain tumor cells." *J. Cell Biochem.* 1995; 57(1): 150-62.
- Perng, M. D., et al. "Induction of aggregation and augmentation of protein kinase-mediated phosphorylation of purified vimentin intermediate filaments by withangulatin A." *Mol. Pharmacol.* 1994; 46(4): 612-7.

Return to the Mullaca Plant Database File